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A number of problems arise when long-range forces, such as those governed by
Bessel functions, are used in particle—particle simulations. If a simple cutoff for the
interaction is used, the system may find an equilibrium configuration at zero tem-
perature that is not a regular lattice yet has an energy lower than the theoretically
predicted minimum for the physical system. We demonstrate two methods to over-
come these problems in Monte Carlo and molecular dynamics simulations. The first
uses a smoothed potential to truncate the interaction in a single unit cell: this is appro-
priate for phenomenological characterisations, but may be applied to any potential.
The second is a new method for summing the unmodified potential in an infinitely
tiled periodic system, which is in excess of 20,000 times faster than previous naive
methods which add periodic images in shells of increasing radius: this is suitable for
quantitative studies. Finally, we show that numerical experiments which do not han-
dle the long-range force carefully may give misleading results: both of our proposed
methods overcome these problems, 2000 Academic Press

Key Words:infinite lattice summation; cutoff; long-range forces; molecular
dynamics; Monte Carlo; periodic boundary conditions.

1. INTRODUCTION

Considerable effort has been invested in handling long-range forces for particle—part
simulations. The conventional cutoff approach truncates the potential in a single unit
for separations greater than half the system dimension. In general it is better to sum
potential over a number of repeats of the unit cell. Infinite summation methods inclu
the Ewald summation [1-3], multipole methods [4], lattice summation methods [5],
Lekner summation method [6, 7], and a novel method for logarithmic interactions [8].
this paper we review some of the problems which can occur when the potential is naiv
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truncated, which have not previously been widely reported in the literature. We then del
two methods which overcome these problems. The first is suitable for phenomenolog
studies of systems and smooths the potential within a single unit cell. The second is a
real-space summation method appropriate for potentials governed by Bessel functions.
provides a speed-up of at least 20,000 compared to the current method of summing
series of shells of increasing radius [9].

In Section 2 we introduce our model system, which is a simulation of a layered sup
conductor. We discuss the problems which arise with cutting off this potential in a sing
unit cell in Section 3, and we give a simple method of smoothing the potential which ov
comes these problems in Section 4. In Section 5 we consider an infinitely tiled perio
system and derive our new summation method. Section 6 describes a simulation of she:
a superconductor lattice using our new methods and constrasts it with the results obta
when the potential is cut off. We draw our conclusions in Section 7.

2. MODEL SYSTEM

We will consider the long-range forces which arise in the simulation of pancake vortic
in layered high-temperature superconductors [10]. The potential is governed by [9, 11-

u() r
"o =ra(3) @

wherel is the penetration depth of the magnetic field the distance between the particles,

andc is a constant. This may be approximated as

u(r) {(nx/zr)l/2 exp(—r/A) r — oo @)
c In(x/r)+0.12 r <.

Sincex can be several orders of magnitude larger thi@j, the K, potential has a very long-
range character. It is therefore necessary to either (i) only consider the interaction insi
single unit cell which contains a large number of particles or (ii) sum the interaction o\
period repeats of the unit cell.

Our findings are also of relevance to the simulation of other systems governed by lo
range forces such as the interaction of electrically charged rods [8]. We will show rest
for Monte Carlo and molecular dynamics simulations where the two-dimensional unit
geometry can be chosento be arectangle, a parallelogram, or a hexagon. In all cases pe
boundary conditions are employed.

3. CUTOFF POTENTIAL

The standard approach is to cut off the potential to be constant outside a circle of rac
equal to mirgL,/2, L/2), whereL, andLy are the lengths of the sides of the unit cell.
Since the force is the gradient of the potential, it is zero outside the cutoff radius. We tt
define the distance between particleso be the minimum image distance [3].

In Fig. 1 the real force dependenkEgr ) is compared to that for a simulation system with
a simple geometrical cutoff. For vortices in superconductors, Abrikosov [15] demonstra
theoretically that the lowest energy configuration for an infinite lattice is the hexagor
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FIG. 1. Along-range force: (solid line) full force; (dotted line) force cut off at a distangg; (dashed line)
smoothed force. Distances are measured in multiples of the ground-state lattice spacing.

lattice, or so-called Abrikosov lattice, with an associated Abrikosov lattice energy. Howev
when using a sharp cutoff in our simulations we find many configurations with energ
lower than the Abrikosov lattice energy.

Figure 2 shows the results from a molecular dynamics simulation of a small number
particles in which the temperature in the system is cyclethftbK to half the melting
temperature of the vortex solid and is then returned to 0 K. The temperature is introdu
via a stochastic noise term. The Delaunay triangulation of the vortex configuration at the
of the simulation in Fig. 2 is elastically deformed. Detailed examination of the triangulatic
shows that the elastic deformations arise due to particles gathering on the boundaries c
cutoff circles. In this position they minimise their contribution to the energy (or force) in th
system. This gives rise to the “wavy lines” visible in Fig. 2, with a curvature characteris
by the cutoff radius. To demonstrate this, we have shown the cutoff circles correspondin
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FIG.2. (left) Molecular dynamics simulation of 90 particles using a cutoff potential which start in a hexagon
configuration &0 K (with Abrikosov lattice energyE,), are heated to half their melting temperatufg)( and
then returned to 0 K. Temperature is introduced via a stochastic noise term. The system finds a new configur
with energy lower than the energy of the regular lattice. (right) Delaunay triangulation of the final configuration
the particles at time step 5000. Two cutoff circles are shown to demonstrate that particles align along these cil
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FIG. 3. Monte Carlo simulation of 432 particles using a conventional cutoff potential. The system starts il
regular hexagonal Abrikosov lattice and is heated above its melting poi#lq, then annealed slowly to zero tem-
perature in steps of 0.0}, each of 5000 sweeps. (left) The energy of the system drops below the Abrikosov latti
energyE.. (right) Delaunay triangulation of the final disordered configuration. The topological defects are circle

two of the particles. The wavy lines are less evident in larger systems, since their curva
is inversely proportional to the cutoff radius.

If the system is heated above its melting temperature and then annealed slowly,
final equilibrium state (i) has an energy lower than the Abrikosov energy and (ii) conta
topological defects. A topological defect is a particle which does not have six near
neighbours in the Delaunay triangulation. We have repeated these results for molec
dynamics and Monte Carlo simulations with up to 2000 particles. The result in Fig. 3 fo
Monte Carlo simulation of a system annealed from a liquid state exhibits low energy &
contains defects. We have verified that our results are independent of the geometry o
unit cell (rectangular, parallelogram, or hexagonal).

These problems are clearly artificial and are caused by imposing a sharp cutoff on the
long-range nature of the interaction. Since the penetration depigenerally much larger
than the lattice spacing, it would require systems with several hundred thousand parti
before the effects of this finite size problem began to become less significant. Method
deal with such large systems with the Bessel function interaction potential are currel
being developed [16].

In studies of high-temperature superconductors, interest has recently developed ir
formation of topologically ordered states which exhibit quasi-long-range translational orc
the so-called Bragg glass. These states occur when the vortices are weakly pinnec
have been investigated both theoretically and experimentally [17, 18]. Other studies
focussed on the structural properties of the dynamics of vortex systems [19, 20]. In b
cases it is important that the ground state for an unpinned system should be a hexac
lattice without topological defects. Furthermore for the calculation of numerical pha
diagrams as a function of disordering pinning, it is vital that the disorder is not introduc
by the model itself.

We therefore propose two methods which avoid the problems described above. The
involves modifying the potential near the cutoff and allows qualitative simulation of sm:
systems using only a single unit cell. The second is a new fast summation method that al
the infinitely tiled periodic system to be considered and allows quantitative simulations
be performed.



376 FANGOHR ET AL.

magnitude of force field
magnitude of force field

05

FIG. 4. The magnitude of the force field that a particle at position (0, 0) experiences from a system of 4
particles using (left) the sharp cutoff and (right) the smooth cutoff. The effect of smoothing the potential is
remove the discontinuities in the force.

4. SMOOTHED POTENTIAL

In Fig. 4 (left) we show the force field experienced by a vortex due to its surroundi
particles in a hexagonal configuration. The discontinuities are caused by the artificial
in the force function shown in Fig. 1. It is natural to introduce a smoothed potenti:
which reduces the force smoothly to zero over a region frggato rcuor, and we impose
C! continuity of the force at =rge andr =rqy . The smoothed potential is shown in
Fig. 1, and the resulting smooth force field is shown in Fig. 4 (right). The smoothir
distancer ot — l'ade iS @ free parameter which should be kept as small as possible
maintain the original force over the largest possible range. Numerical experiments st
thatthree lattice spacings is sufficient. Figure 5 shows the results of a Monte Carlo simula
using a similarly smoothed energy. Simulations using this modified potential do not fi
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FIG.5. Monte Carlo simulation of 432 particles using a potential smoothed over three lattice spacings. (¢
The energy of the system never drops below the Abrikosov lattice enggggright) Delaunay triangulation of
the final configuration shows the system has a hexagonal ground state.
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configurations below the Abrikosov energy, and topological defects only occur when
system is annealed very rapidly.

The interpretation is that due to the slow force change at the cutoff (enforced by
derivative being zero) a particle pair separated by a distance of roughlyexperiences
continuous and small changes in force if their positions are perturbed. This is in contras
the large discontinuous fluctuations, which can enable the system to discover configurat
with energies less than the Abrikosov energy. We have also used interpolating polynor
of higher order and an exponential function in the smoothing region: in all cases the sys
does not discover energy states below the Abrikosov energy.

Itis important to consider whether the modification of the original force with the smoo
cutoff affects the system’s behaviour. Using a cutoff to the long-range interaction is a me
change of the long-range interaction. However, introducing the smoothing distance
altering the force in the region betweggy. andr .yt Cannot be worse than using a slightly
smaller system with/,,;,x = 'tade. The enormous advantage of using a smooth cutoff is th:
the structural properties of the system can be simulated correctly and that the lowest en
configuration is identical to the theoretical ground state. For studies of the dynamics
vortices, recent results show that the precise details of the long-range particle interac
are not crucial [13]. We therefore recommend the smoothed potential for phenomenolog
characterisation of superconductors.

5. FAST INFINITE SUMMATION

An alternative approach to modifying the potential is to sum the potential function ov
periodic repeats of the unit cell, which provides the best representation of the system g
only a finite number of particles. We write the potential (1) in the form [9]

w pe (m) _ Z KO(L+ LymyX + Lymy9>’ 3)

Cc A A
My, my

wherem, andmy are integers antly andL are the lengths of the edges of the simulatior
cell. This is truncated such tha + mf, < N2; we sum the potential in shells of increasing
radius, N, until it has converged. Following Ryet al. [9], we will use a value for the
penetration depthy,, at 0 K of 7700A for Mo77;Geys. We will return to the temperature
dependence df later. In Fig. 6, we show the exponentially fast convergence of the ener
between two particles in a simulation of 300 vortices in the Abrikosov lattice state
more image cells are included. We also show the time taken to perform this calculat
on a 450 MHz Pentium Il using Compagq (Digital) Visual Fortran under Windows NT 4.
For the particle—particle energy to converge to a relative error better thal91® requires
Nm ~ 300, which takes-300,000 calls to th& function. This ensures that the total system
energy is accurate to better than 0.01%.

We now derive a new method to perform this infinite summation. In Fig. 7 we have

Z? = (mkLyx)? + (myL)?
= —X)*+ (% —y))?

9 — tan1<xi_xj) _|_ z
Yi =i 2

g =tan?! mylLy
MLy )’

4
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FIG. 6. Fractional errorE,, — E,)/E,, and time taken to compute the energy between two particles
separated by a single lattice spacing in an infinitely tiled periodic system wireage cells are used. Helg,,
is estimated by allowing the summation to converge to machine accuracy.

which yields
p=0+¢

5
w? = 7% 4+ 22 — 2z2Zcod¢). ®)

We may use the Gegenbauer addition formulae [21] to write

m(’f) - kic m(f) m(i) cosk) ®)

(xj +m_L yj9+myLy)
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FIG. 7. Two particles in a unit cell with infinite periodic repeats.
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for the energy between a partidlend one of the periodic images pfwherel, and Ky
are modified Bessel functions. This formula requizesZ, which is automatically satisfied
sincez is the minimum image distance betweeand j. We can therefore write the total
energy (3) of two particlesand j summed over all periodic images in the form

G(5)=wi(h)=w(2)+ X k:f:m (£ ) £ osienr.

my,my
notmy=my=0

where the casen, =my =0, for whichz £ Z, is the contribution to the energy from the
unit cell which must be explicitly included as a separate term. Further rearrangement
use of (5) gives

TEAWDPNEAWE S INE: g
K < - ) =Ko (/\) + k;m le (A) [ce cogke) — s sin(ko)], (8)
where
a= > K z cogkp) and = > K z sin(kg).  (9)
K = k\ 3, @ S = k\ 5 ).
my,my my,my
notmy=my=0 notmy=my=0

Equations (8) and (9) have the remarkable property that the coefficients correspone
to the infinite summation over the periodic repeats of the unit cell can be precomput
This reduces the double summation in (3) to a single summation. Furthermore, due tc
exponential convergence of the Gegenbauer addition formulae, the sum may be trunc
at kqunc~ 5—20 terms. A further factor of two in performance can be obtained by usir
symmetry to convert the summation frdes= —co ... 0o to the rang&k=0. . . co.

The form (8) closely resembles a Fourier type summation method, yet the whole calc
tion proceeds in real space in contrast to the Ewald summation method [22]. Our propc
method couples directly to a multipole method for computing the interaction energy ins
the unit cell in GN) time [16], which is based on the Gegenbauer addition formulae, rath
than a Taylor series expansion. Ou¢(ND method provides further speed-up when there
are more than-1200 particles in the unit cell. This is analogous to the method describ
in [5], which couples a lattice summation method with a multipole method based on Tay
series. It is certainly not appropriate to use the method proposed in [8], which sum
genuinely logarithmic potential over infinite repeats of the unit cell, since the logarithrr
approximation to thdé, potential is only valid for small as shown in (2).

The convergence of the energy between two particles in the Abrikosov lattice is identi
to the convergence shownin Fig. 6 as we add more terms to the calculation of the coeffici
¢k andsc. We have chosen the case of two nearest neighbours, which yields the slov
convergence of (8) sincetakes its smallest value.

In a superconductok, is a function of the temperature. For our model system{i@e,s)
AMT)=1(0)/(1 - T/T)¥?[9], whereT, =5.63 K is the critical temperature at which the
material loses its superconducting properties. Hence the coefficeatel s need to be
recomputed at each temperature. As the temperature increases additional image cells n
be included in both (3) and the precomputation (9). The crucial difference, however, betw
(3) and (8) is that the time taken to evaluate the energy using (8) remains constant onc
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FIG. 8. Speed-up of fast infinite summation method over naive implementation when the relative error in
energy between each pair of particles is fixed at10-5: both methods yield identical results.

coefficients are available, whereas the naive summation requires considerable numbe
additional image cells to converge to the solution. In Fig. 8 we show the speed-up of «
method when computing the energy between two particles at a fixed accurasyldf?
(relative to the energy computed to machine accuracy by either method). In all cases
resulting energies are shown to be identical to the stated accurng@¥ And using 5 terms
in the truncation of (8), we have a speed-up of 20,000 over the naive summation mett
This rises to 400,000 for temperatures approacfindf the particle energy is required
to be accurate to & 108, then, using 30 coefficients, the speed-ups are between 50,0
(T =0K) and 1,000,00QT ~ Tg).

Since the coefficients, andsc depend or (and hence temperature), the method may
appear to be costly if the temperature is changed at every molecular dynamics or Mc
Carlo step. We now discuss several ways to overcome this. First, it is possible to perft
simulations at a small number of temperatures and use the data from these to obtail
formation about the behaviour of the system as a continuous function of temperature |
24]. Thus improving the sophistication of the analysis of the results can reduce the numr
coefficientscy ands, which need to be precalculated. Second, it is possible to compute t
cx ands, at a small set of temperatures and use interpolation to derive their values at of
temperatures. Finally, since onty5-20 coefficients are needed, it is straightforward tc
compute once and store on disk the valuesi@nds, for each temperature to be explored.
These values will be reused a large number of times in a typical set of numerical simulatic

We implement (8) using a recurrence relation [25] for the trigonometric terms and
vendor-optimised vector Bessel function. Goertzel's algorithm [26] could be employed
additional efficiency, though the improvement is likely to be marginal. The remarkak
speed-up obtained is due to the fixed work equivalent to roughly five calls to a Bes
function routine required for (8), compared+d.00,000 calls required for (3) (at 0 K). The
five calls are: two to initialise the Bessel recurrence, one to evaluate the contribution fr
the unit cell, and the equivalent of roughly a further two for the remaining trigonometr
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terms. Our infinite summation is correspondingly five times slower than using the smootl
potential in a single unit cell, which requires evaluation of a single Bessel function ol
polynomial. This is confirmed by experiments. For simulations using the fast infinite latti
summation, results are similar to those of Fig. 5. The infinite lattice summation methot
suitable for quantitative studies of superconductors.

6. RESULTS

In the previous sections we have demonstrated that the phenomenological potential
the infinitely summed potential ensure that the Abrikosov lattice is the minimum ener
configuration for our system. We now show that the presence of dislocations, which ¢
results from incorrect handling of the long-range potential, seriously affects study of
elastic properties of a lattice. For superconductors the structure of the lattice determine:
static and dynamic properties of the vortex lattice. This is known from experimental [27, -
and theoretical work [29]. The simulation potential should not introduce dislocations, sir
this will affect the onset of plasticity in the lattice which is directly related to characterisir
current—voltage behaviour, and thus to applications.

We have considered a simulation of the shearing of a hexagonal lattice, which is a s
plified version of the simulations required to perform current-voltage characterisatio
Inset (a) in Fig. 9 shows a Delaunay triangulation for half the simulation cell demonstrati

- =1
[T Ig 0.4
S ©
o £ e
£E o e
a5 E
© 5 ,
0.2
5 /]
o 9
o ¥ _
E : EOJ
= E "o 2 4
n c Z Time Steps in 10°
- 0
B (c2)
= w
S <=
-
=
© -4
o
-
2 6 "o 2 4
/4]

Time Steps In 10°

0 0.02 0.04 0. 06 0.08 0.1
shea (sim. units)

FIG. 9. Change in energyAE (in simulation units), as a function of a shearing forégea (in simulation
units), for the smooth and the sharp cutoffs. For the infinite lattice summation we obtain qualitatively simi
results. Insets (a), (b1), and (b2) show different snapshots of vortex configurations. Insets (c1) and (c2) sho
local hexagonal orde, as the experiment progresses (see text for details).
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the experimental setup: a shearing force is applied to the central row of particles mar
by black points, and the particles marked by open circles are not allowed to move in
x-direction. The main diagram shows the resulting change in energy as a response tc
shearing force. The upper part of the figure shows data for the smooth cutoff, with the loy
part showing the results for the sharp cutoff. The smooth cutoff and the infinite lattice su
mation produce the expected behaviour: with increasing shear stress the energy incre
The slope of the energy change as a function of the displacement characterises the
elastic modulus of the crystal. Inset (b1) shows a triangulation of a system which has b
slightly tilted by the applied force. In contrast, when the sharp cutoff is employed the enel
decreases for applied shear stress; i.e., the material appears to collapse after a shearing
is employed (inset b2)!
Insets (c1) and (c2) show the time evolution of the local hexatic order,

Wg

Z exp(i66i) |,

nbond

where the sum runs over all bond anghgsn the Delaunay triangulation. Every 50,000
time steps the system starts as a hexagonal latfige= 1) and a new shearing force is
applied for the next 50,000 time steps.

In (cl), which shows the smoothed potentidéik decreases continuously until a static
state is reached, reflecting the shearing of the system. The energy data is taken from 1
static states. In (c2) (sharp cutoffg drops suddenly to a much smaller value, representin
the sudden change to configurations similar to those shown in (b2). Thus, the mechar
properties of the lattice using a sharp cutoff are severely affected by the incorrect h
dling of the long-range potential: this would seriously affect numerical simulations aim
at studying elastic properties of superconductors. The smooth cutoff and the infinite lat
sum produce the correct physical behaviour and can be used in more complex hume
simulations for phenomenological (smoothed potential) or quantitative (infinite summatic
study of the dynamic phase diagram of the superconductor lattice [30, 31].

7. CONCLUSIONS

For Monte Carlo and molecular dynamics simulations using long-range interactic
subject to periodic boundary conditions, a sharp cutoff for the interaction energy (or for
can yield misleading results. We have considered the case of superconductors, in w
the potential is governed by a Bessel function. Monte Carlo simulations are often use
study phase diagrams numerically, and it is vital that the phase behaviour of the systen
be affected by the model itself. We find that when a sharp cutoff is used the system
find irregular lattice configurations with an energy below the theoretical ground state ¢
regular hexagonal lattice. In molecular dynamics, study of the dynamical phase diagrar
the material can be dramatically affected by incorrect handling of the long-range potent

We have presented two methods which overcome these problems. The first is suitabls
phenomenological studies of systems and uses a smoothed potential, but still truncate
interaction over a single unit cell. Annealing a system governed by this modified potent
yields a perfect hexagonal lattice which is the global energy minimum. This is the comj
tationally least expensive option and is applicable to any potential. The second sums
interaction over the infinitely tiled unit cell and is suitable for quantitative system studie
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Previous methods for performing this add the tiled images in a series of shells of increa:

ral

dius. We have shown that with the precomputation of a set of Fourier type coefficiel

the whole infinite summation can be computed using a summation which converges
ponentially fast and results in a speed-up of between 20,000 and 1,000,000 over the r
summation, depending on the range of the interaction and the desired accuracy. The de
tion of the summation proceeds in real space, and the results converge exactly to tl
obtained from other summation methods. This is roughly five times as slow as using
smoothed potential, but it is the most accurate method for systems of finite size. We

re

port elsewhere on the results of systems we have studied using our methods [30, 31

also on a method for evaluating the energy within the unit celliN{Ttime [16].
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